A contribution to the Zarankiewicz problem

نویسنده

  • Vladimir Nikiforov
چکیده

Given positive integers m,n, s, t, let z (m,n, s, t) be the maximum number of ones in a (0, 1) matrix of size m× n that does not contain an all ones submatrix of size s× t. We show that if s ≥ 2 and t ≥ 2, then for every k = 0, . . . , s− 2, z (m,n, s, t) ≤ (s− k − 1) nm + kn+ (t− 1)m. This generic bound implies the known bounds of Kövari, Sós and Turán, and of Füredi. As a consequence, we also obtain the following results: Let G be a graph of n vertices and e (G) edges, and let μ be the spectral radius of its adjacency matrix. If G does not contain a complete bipartite subgraph Ks,t, then the following bounds hold μ ≤ (s− t+ 1) n + (t− 1)n + t− 2, and e (G) < 1 2 (s− t+ 1) n + 1 2 (t− 1)n + 1 2 (t− 2)n.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Extrema for Graphs: The Zarankiewicz Problem

Let G be a graph on n vertices with spectral radius λ (this is the largest eigenvalue of the adjacency matrix of G). We show that if G does not contain the complete bipartite graph Kt,s as a subgraph, where 2 6 t 6 s, then λ 6 (

متن کامل

Extremal Graph Theory

3 Third Lecture 11 3.1 Applications of the Zarankiewicz Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 The Turán Problem for Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 The Girth Problem and Moore’s Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Application of Moore’s Bound to Graph Spanners . . . . . . . . . . . ....

متن کامل

Zarankiewicz Numbers and Bipartite Ramsey Numbers

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

متن کامل

Cutting lemma and Zarankiewicz's problem in distal structures

We establish a cutting lemma for definable families of sets in distal structures, as well as the optimality of the distal cell decomposition for definable families of sets on the plane in ominimal expansions of fields. Using it, we generalize the results in [10] on the semialgebraic planar Zarankiewicz problem to arbitrary o-minimal structures, in particular obtaining an o-minimal generalizatio...

متن کامل

The Zarankiewicz Problem via Chow Forms

The well-known Zarankiewicz problem [Za] is to determine the least positive integer Z(m,n, r, s) such that each m × n 0-1 matrix containing Z(m,n, r, s) ones has an r × s submatrix consisting entirely of ones. In graph-theoretic language, this is equivalent to finding the least positive integer Z(m, n, r, s) such that each bipartite graph on m black vertices and n white vertices with Z(m,n, r, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009